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ABSTRACT: The acquisition of high-resolution tandem mass
spectra (MS/MS) is becoming more prevalent in proteomics,
but most researchers employ peptide identification algorithms
that were designed prior to this development. Here, we
demonstrate new software, Morpheus, designed specifically for
high−mass accuracy data, based on a simple score that is little
more than the number of matching products. For a diverse
collection of data sets from a variety of organisms (E. coli, yeast,
human) acquired on a variety of instruments (quadrupole−
time-of-flight, ion trap−orbitrap, and quadrupole−orbitrap) in
different laboratories, Morpheus gives more spectrum, peptide,
and protein identifications at a 1% false discovery rate (FDR)
than Mascot, Open Mass Spectrometry Search Algorithm
(OMSSA), and Sequest. Additionally, Morpheus is 1.5 to 4.6 times faster, depending on the data set, than the next fastest
algorithm, OMSSA. Morpheus was developed in C# .NET and is available free and open source under a permissive license.

KEYWORDS: proteomics, mass spectrometry, database search algorithm, software, informatics

■ INTRODUCTION

The emergence of fast and sensitive hybrid mass spectrometers
such as quadrupole−time-of-flight (Q−TOF)1−3 and ion trap−
Fourier transform4,5 instruments was a major advance for
proteome analysis.6 With these devices, mass spectra are
routinely acquired with resolving power and mass accuracy
roughly two orders of magnitude better than unit resolution
instruments. In the case of ion trap−Fourier transform mass
spectrometers, initially the speed and sensitivity of ion trap
mass analysis of MS/MS spectra outweighed the improved
specificity provided by Fourier transform mass analysis,
although this balance continues to shift toward high-resolution
analysis of all spectra.7−12 Many of today’s most popular
database search algorithms, however, were designed for
yesterday’s unit resolution data.
Scoring of peptide−spectrum matches (PSMs) is the most

defining aspect of a search algorithm,13 but little has changed in
this regard since the shift toward high−mass accuracy data,
despite the vast increase in specificity afforded. Sequest,14

introduced in 1994, was the first major database search
algorithm, using cross-correlation to evaluate the similarity
between experimental and theoretical mass spectra. Mascot15

followed in 1999 with a probability-based score. Since then,
most peptide identification algorithms have followed this
probabilistic scoring approach, including popular open-source

algorithms X!Tandem16 and OMSSA.17 Although these
algorithms are capable of dealing with high mass accuracy, to
our knowledge, none have been significantly altered for this
type of data. There have been numerous other algorithms
introduced, perhaps most notably Andromeda18 of the
MaxQuant19 suite, but none of which have fundamentally
different scoring for high−mass accuracy MS/MS.
We sought to develop software designed from the ground up

for high-resolution MS/MS. For spectral preprocessing, we
were careful to take advantage of the specificity provided by
high mass accuracy to assign charge states and remove non-
monoisotopic peaks, but with minimal loss of sensitivity. We
initially started with a very rudimentary score: the number of
matching products plus the fraction of spectrum abundance
assigned to matching products. Remarkably, we found that
these straightforward methods surpassed contemporary search
algorithms. We postulate that the added specificity of high−
mass accuracy data makes it easier to distinguish correct and
incorrect identifications with a less finely tuned metric.
One possible concern with such a simplistic score is the lack

of a probabilistic interpretation that is nearly unanimous in
current peptide identification software. However, another
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important trend in mass spectrometry-based proteomics is the
widespread adoption of target−decoy searching20 for control-
ling the error rate of peptide and protein identifications.21,22 In
this paradigm, PSMs minimally benefit from statistically
meaningful scores, as the absolute value of scores is irrelevant
for the purposes of evaluation with FDR. Since PSMs are
ordered against each other, only the relative value of scores is
important. Global and local error rates can be determined
empirically. This has major implications for PSM scoring. Since
statistical scores are no longer beneficial, probabilistic models
need not be invoked, which means scoring can be simplified
and computationally expedited.
Here, we describe our new proteomics search algorithm,

Morpheus, which aims to modernize and simplify the analysis
of peptide MS/MS spectra. Precursor mass-to-charge ratio (m/
z) and charge state is taken directly from scan metadata and is
not re-evaluated. Spectral preprocessing involves a simple top n
peaks abundance filtering and a rudimentary charge state
determination and deisotoping algorithm that involves no
fitting of theoretical distributions. In terms of peptide−
spectrum matching, only the most common product ions are
considered (i.e., b- and y-type for collisional dissociation) with
no differential weighting. Using Morpheus’s simplistic algo-
rithms, we demonstrate a significant improvement in PSM,
distinct peptide, and protein group identifications at a fixed
FDR over several popular search algorithms.
We hope these findings will encourage a new trend of

simplicity and transparency in database search algorithms and
allow mass spectrometry users to understand how spectra are
judged and identifications produced, without sacrificing
sensitivity. We believe the speed of the software is also
noteworthy, particularly considering it was developed in the
high-level programming language C# .NET and has not been
extensively optimized, making it accessible to most developers.
The permissive open-source license places minimal restrictions
on the code. Moreover, the combination of speed and
simplicity facilitates new workflows based on real-time
identification, similar to those introduced in MaxQuant Real-
Time.23 A variation of the Morpheus algorithm is the basis of
the instant sequence confirmation (inSeq) method, executed in
the onboard mass spectrometer computer, enabling a range of
advanced experiments.24

■ SOFTWARE

Software Development

Morpheus was developed in C# with Microsoft Visual Studio
2008 and 2010. It uses the Microsoft .NET Framework version
4.0, including the Task Parallel Library for multiprocessor and
multicore support.
Spectrum Preprocessing

Morpheus uses the extensible markup language (XML)−based
standard mzML25,26 as the input file format. Three options are
provided for MS/MS peak filtering: an absolute threshold, a
relative threshold, or a total number of peaks threshold (based
on abundance). Charge state assignment for MS/MS spectra is
performed with a single iteration through all peaks. For each
peak, higher m/z peaks are considered. If any of those peaks are
located at an m/z where an expected isotopic peak would lie for
a charge state from one to the charge state of the precursor,
within mass tolerance, the reference peak is considered to be of
that charge state. Note that this could result in multiple charge
states and therefore multiple masses for a single peak; this is

allowed to maximize sensitivity. Deisotoping of MS/MS spectra
is also achieved by a single iteration through all peaks but in the
reverse direction. For each peak, lower m/z peaks are
considered. If the reference peak lies where an expected
isotopic peak would lie for a charge state from one to the
charge state of the precursor, within mass tolerance, and is of
lower abundance, the reference peak is considered to be an
isotopic peak and removed.

Peptide Generation

After spectral preprocessing, the main computational workflow
of Morpheus starts with proteins digested into peptides instead
of MS/MS spectra. Although less intuitive, this approach
(inspired by OMSSA17) reduces the memory footprint of the
software because the spectral data is typically smaller than a full
proteome database digested into peptides, even before
considering modifications. Peptides are generated by iterating
through each protein in the FASTA file and digesting with the
specified protease, allowing up to the maximum number of
missed cleavages. For each peptide, fixed modifications are
applied, then each combination of variable modifications is
considered up to a limited number of isoforms. For each
peptide isoform, the mass plus the mass tolerance is used as a
key to perform a binary search of the product spectra, which
have already been sorted by ascending precursor mass. Each
candidate MS/MS spectrum is iterated over in descending
order and scored until one is encountered that is below the
peptide mass minus the mass tolerance.

PSM Scoring

PSMs are scored by the sum of the number of matching
products and the fraction of the spectrum abundance that can
be assigned to matching products. Both elements of this score
are rapidly calculated by asynchronous iteration through
theoretical and experimental product ions, both presorted by
mass.

Outputs

Morpheus produces several different output files: a log file,
pepXML,27 and tab-delimited PSM, distinct peptide, and
protein group files.

■ EXPERIMENTAL SECTION

Data Sets

Morpheus was tested with six sets of triplicate data: (1) Q−
TOF E. coli acquired on an Agilent 6530A, (2) dual-cell linear
ion trap−orbitrap (dcLIT−OT) yeast acquired on a Thermo
Scientific LTQ Orbitrap Velos using higher-energy collisional
dissociation (HCD) with product mass analysis in the orbitrap,
(3) dcLIT−OT human acquired on a Thermo Scientific LTQ
Orbitrap Velos using HCD with product mass analysis in the
orbitrap, (4) quadrupole−orbitrap (Q−OT) human acquired
on a Thermo Scientific Q-Exactive, (5) LIT−OT ETD human
acquired on a Thermo Scientific LTQ Orbitrap XL using
electron-transfer dissociation (ETD) with product mass
analysis in the orbitrap, and (6) dcLIT−OT/IT yeast acquired
on a Thermo Scientific LTQ Orbitrap Velos using resonant-
excitation collision-induced dissociation (CID) with product
mass analysis in the ion trap. Data sets dcLIT−OT human and
Q−OT human were described in Michalski et al.28 Data set
LIT−OT ETD human was described in Wenger et al.29 The
data sets are summarized in Table S1, Supporting Information.
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E. coli Sample Preparation

E. coli lysate (BioRad) was suspended in a buffer of 50% 2,2,2-
trifluoroethanol, 50 mM ammonium bicarbonate, and 5 mM
dithiothreitol to a protein concentration of 1.35 mg/mL.
Proteins were denatured thermally at 60 °C for 45 min,
alkylated with 10 mM iodoacetamide at room temperature for
30 min in the dark, and the excess iodoacetamide was quenched
with dithiothreitol. The reaction mixture was diluted to 5%
trifluoroethanol and 25 mM ammonium bicarbonate by
addition of water and 100 mM ammonium bicarbonate and
digested with sequencing-grade modified trypsin (Promega) at
a 1:25 enzyme/substrate ratio at 37 °C overnight. Trypsin was
inactivated via addition of neat formic acid to pH 3, and the
sample was stored at −80 °C until use.

E. coli LC−MS/MS

For each 65 min analysis, 500 ng of sample was loaded onto the
360 nL enrichment column of a Polaris-HR-Chip-3C18 chip in
a ChipCube source. Peptides were eluted from a 75 μm i.d. ×
150 mm analytical column. Both columns contained Polaris
C18-A stationary phase with 3 μm particle diameter and 180 Å
pore size. Mass spectral acquisition on an Agilent 6530A Q-
TOF consisted of MS1 at a scan rate of 4 Hz followed by MS/
MS of the top 10 most abundant precursors, with a target of 25
000 counts/spectrum. Precursor charge states of +2, +3, and >
+3 were selected. An isolation width of ∼1.3 Th (narrow
mode) was used. Collision energies of 3.6 × m/z/100 − 4.8
were used. Dynamic exclusion was enabled after one MS/MS
event for 48 s.

Yeast Sample Preparation

Wild-type lab strain of yeast was grown in yeast peptone
dextrose (YPD) media to midlog phase. Cells were
subsequently harvested via 10 000 rpm spin-down and washed
with chilled water. The cell pellet was resuspended in 5 mL of
lysis buffer (100 mM tris pH 8, 8 M urea, 75 mM NaCl, 1 mM
dithiothreitol, 100 mM sodium butyrate, 1 mM sodium
orthovanidate, Roche Protease inhibitors, and Roche Phos-
STOP inhibitors) and lysed via French press three times. The
lysate was centrifuged at 14 000 rpm for 10 min to remove cell
debris. Cysteine residues were reduced by incubating lysate
with 5 mM dithiothreitol for 45 min at 37 °C followed by one
hour incubation in 15 mM iodoacetamide at room temperature
in the dark. Excess iodoacetamide was capped with
dithiothreitol at room temperature. After the addition of 1
mM CaCl2 and 50 mM tris (to decrease urea to 1 mM) and
adjusting to pH 8, proteins were digested with sequencing-
grade modified trypsin (Promega) at a 1:50 enzyme/substrate
ratio at 37 °C overnight. Digestion was quenched by the
addition of trifluoroacetic acid to a final concentration of 0.5%
(pH ≤ 3), desalted via solid-phase extraction on tC18 SepPak
cartridges (Waters), and the eluent was lyophilized and stored
at −80 °C until further use. Prior to injection, samples were
resuspended to a final concentration of 1 μg/μL.

Yeast LC−MS/MS

For each 165 min analysis, 1 μg of sample was loaded onto a 75
μm i.d. × 8 cm precolumn. Peptides were eluted from a 50 μm
i.d. × 25 cm analytical column via a Waters nanoAquity HPLC.
Both columns were packed with Magic C18 AQ (Michrom)
stationary phase with 5 μm particle diameter and 300 Å pore
size. Mass spectral acquisition on a Thermo Scientific LTQ
Orbitrap Velos consisted of MS1 at a resolving power of 30 000
and an automatic gain control target of 1 × 106 charges

followed by MS/MS of the top 10 most abundant precursors at
a resolving power of 7500 (HCD) and an automatic gain
control target of 2 × 105 (HCD) or 1 × 104 (CID) charges.
FTMS master scan preview mode was disabled for HCD but
enabled for CID. Monoisotopic precursor selection was
disabled. Precursor charge states of +2, +3, and >+3 were
selected. An isolation width of 3 Th was used. Normalized
collision energy was set to 45 (HCD) or 35 (CID). Dynamic
exclusion was enabled after one MS/MS event for 60 s.

Database Searches

The 15 collisional dissociation data files were searched with
Morpheus and three popular search algorithms: Mascot15

(version 2.4.0, Matrix Science), OMSSA17 (version 2.1.9), and
Sequest14 (via Proteome Discoverer version 1.3.0.339, Thermo
Scientific). The three ETD data files were also searched with
ZCore30 (via Proteome Discoverer). FASTA database files were
downloaded from UniProt’s31,32 reference proteome sets
(release 2012_07) and converted to a concatenated target-
decoy version by reversing protein sequences (except for the N-
terminal amino acid when it was methionine) with Database
Maker of the Coon OMSSA Proteomic Analysis Software Suite
(COMPASS).33

All data sets were converted to mzML with the msconvert
utility of ProteoWizard34,35 (version 3.0 build 3768). For the
dcLIT−OT human and Q−OT human data sets, vendor
centroiding (--filter ″peakPicking true 1-″) was applied since
the data was acquired in profile mode. For the ETD data sets,
ETD preprocessing (--filter ETDFilter) was enabled to remove
precursor, charge-reduced precursor, and neutral losses from
charge-reduced precursor.36,37

The resulting mzML files were searched directly by Mascot
and Morpheus. OMSSA searches were performed with merged
.dta files separated by XML-like tags. Sequest and ZCore
searches were performed with Mascot generic format (MGF)
files. Merged .dta and MGF files were generated directly from
the mzML files to prevent bias (i.e., extra or different
information provided), using custom software.
Trypsin without the proline rule (except the ETD data set,

which used Lys-C without the proline rule) was used with full
specificity and a maximum of two missed cleavages.
Monoisotopic precursor mass tolerance was ±2.1 Da to
account for monoisotopic peak assignment errors, and
monoisotopic product mass tolerance was ±0.025 Da for Q−
TOF data sets and ±0.01 Da for orbitrap data sets, except the
data sets with ion trap product mass analysis, which used ±0.5
Da. Carbamidomethylation of cysteine (+57 Da) was specified
as a fixed modification; oxidation of methionine (+16 Da) was
specified as a variable modification.
Parameters were left at their defaults except where noted. For

Mascot, the ESI-QUAD-TOF/ESI-TRAP fragmentation rules
(b-, b−NH3-, b−H2O-, y-, y−NH3-, and y−H2O-type products;
product charge states +1 and +2 if precursor +2 or higher) were
used for the Q−TOF and dcLIT−OT/IT data sets, while the
Default fragmentation rules (a-, a−NH3-, b-, b−NH3-, y-, and
y−NH3-type products; product charge states +1 and +2 if
precursor +2 or higher) were used for dcLIT−OT and Q−OT
data sets. The ETD-TRAP fragmentation rules (c-, y-, z+1-, and
z+2-type products; product charge states +1 and +2 if precursor
+2 or higher) were used for the ETD data sets. For OMSSA,
searching of the first forward product (i.e., b1 or c1), which is
disabled by default, was enabled (-sb1 0). For ETD searches, c-
and z-type products (-i 2,5) were searched instead of the default
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b- and y-types (-i 1,4). The proline rule, that ETD does not
cleave N-terminal to proline residues, was also specified in these
searches (-p 2,5). For Sequest and ZCore (via Proteome
Discoverer), the Protein Score Cutoff of the Peptide Validation
node was set to zero to disable the removal of PSMs due to
protein grouping. For Sequest ETD searches, product weights
of 1 were used for c- and z-type products instead of the default
of 1 for b- and y-type products. For Morpheus, the top 400
most abundant peaks per spectrum filtering,38 charge state
assignment, and deisotoping were enabled for MS/MS spectra.

Post-search Analyses

For all search algorithms, results were exported as pepXML.27

In Mascot, resulting .dat files were converted to pepXML using
the export_dat_2.pl Perl script, modified to output expectation
values with more precision to avoid ties. The homology
threshold was used for calculating expectation values rather
than the default identity threshold because it gave more
identifications. Custom software was written to perform FDR
analysis at the PSM, distinct peptide, and protein group levels.
The software first selected the best PSM for each scan number.
In cases where target and decoy PSMs had the same score, or a
peptide could be assigned to both target and decoy proteins,
the decoy was preferred. The software sorted PSMs according
to score: ascending expectation value for Mascot and OMSSA,
descending XCorr for Sequest, ascending probability for ZCore,
and descending Morpheus score for Morpheus. The score
threshold yielding the maximum target PSMs at less than or
equal to 1% FDR was determined. Identifications were then
reduced to distinct peptides, ignoring modifications, and the
process was repeated. Finally, protein grouping and parsimony
was performed. Proteins were first redigested, and distinct
peptides identified at 1% FDR were assigned to all possible
parent proteins. Protein scores were calculated as the product
of distinct peptide scores for cases where the PSM scores were
logarithmic (Mascot and OMSSA expectation value, ZCore
probability) or the sum of distinct peptide scores for cases
where the PSM scores were linear (i.e., Sequest XCorr and
Morpheus score); in both cases, only the best-scoring PSM was
used for each distinct peptide. Proteins were sorted by score.
Indistinguishable proteins were merged into groups, then
subset and subsumable protein groups were removed.39 Lastly,
the score threshold yielding the maximum target protein groups
at less than or equal to 1% FDR was determined. The protein
with the longest sequence was used as the representative of the
protein group for the purpose of generating Venn diagrams.

■ RESULTS AND DISCUSSION

We set out to develop a proteomics database search algorithm,
Morpheus, designed specifically for high-resolution MS/MS
spectra, under the assumption that the vastly higher specificity
would fundamentally transform how database searching should
be done. Our initial implementation included very basic
spectral preprocessing and scoring routines. Much to our
surprise, Morpheus actually performed better than several
contemporary algorithms, despite its simplicity.
To illustrate the scoring of Morpheus, an example spectrum,

scan number 12,864 of the second replicate of the Q−OT
human data set, is shown in Figure 1. This spectrum, and this
peptide (sequence NGVPAVGLK), was only identified at 1%
FDR by Morpheus. Although not an extremely confident
identification, 10 matching products (5 b- and 5 y-type) were
found within the product mass tolerance of ±0.01 Da,

accounting for 30.2% of the total spectrum abundance after
preprocessing. The sum of these two quantities yields the
Morpheus score of 10.302. Although not considered by the
one-dimensional FDR analysis of Morpheus, this PSM had a
precursor mass error of less than a part per million, lending
further credence to the identification (the expected correlation
between high Morpheus score and low precursor mass error is
shown in Figure S1, Supporting Information). Morpheus
evaluates each PSM likewise for all peptides within the
precursor mass tolerance (±2.1 Da in this case) and retains
the PSM with the highest score.
We compared Morpheus to popular search algorithms for

several diverse, large-scale proteomics data sets to evaluate its
performance. We were extremely careful to use the same input
data, databases, and parameters to the extent possible, and
analyzed the output identically. Figure 2 shows PSM, distinct
peptide, and protein group identifications at 1% FDR from
Mascot, OMSSA, Sequest, ZCore (ETD only), and Morpheus
for each of the six data sets. The height of the bars is the
average of triplicate LC−MS/MS analyses, with error bars
representing the standard deviation.
Among the high-resolution data sets (a−e), Morpheus

outperforms the other algorithms in all metrics (PSMs, distinct
peptides, and protein groups). Improvements range from 4 to
45% among the collisional dissociation data sets (a−d).
Morpheus performed particularly well relative to the other
algorithms for the Q−OT human data set, with 26% more
PSMs, 18% more distinct peptides, and 13% more protein
groups than the next closest competitor, Sequest. We note that
for Mascot, the fragmentation rules that gave the best
performance for each of the six data sets individually were
used for this comparison (Table S2, Supporting Information).
Morpheus also performed very well on the ETD data set,

with 25% more PSMs, 21% more distinct peptides, and 7%
more protein groups than the next closest competitor, OMSSA.
ZCore, although it was designed specifically for ETD, gave poor
results. Its lack of support for a user-specified product mass
tolerance likely hurt its performance since it could not take
advantage of the high mass accuracy.
These results are surprising given the basic nature of the

score used by Morpheus, little more than the number of
matching products. One might intuit that the fraction of
matching over total possible (2 × [peptide length − 1])

Figure 1. Example spectrum, scan number 12,864 of the second
replicate of the Q−OT human data set. The Morpheus score is merely
the sum of the number of matching products (10) and the fraction of
abundance matched (30.2%), for a total of 10.302. This score, for the
peptide of sequence NGVPAVGLK, was the best among all the
peptides within the precursor mass tolerance.
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products might be a better metric. However, because the
number of spurious matches is largely independent of peptide
length, this score inappropriately favors short peptides. For
example, matching half of the possible products is typically
significant for longer peptides, but likely a false positive for
shorter peptides. The Morpheus score biases against short
peptides, to the point where peptides below a certain length are
not considered even if the match is perfect. However, given the
difficulty in confidently identifying short peptides, we feel this
bias is largely justified and yields favorable results. Note that
there are no explicit lower or upper limits on peptide length,
although the scoring may impose de facto restrictions.

The number of matching products performs quite well as a
score by itself. However, since it can only take on whole
numbers, another factor must be introduced to avoid
quantization. Large numbers of PSMs sharing the exact same
score leads to drastic, undesirable jumps in FDR. A suitable
metric is the fraction of the spectrum’s abundance matched to
product ions over the total abundance, after preprocessing. This
has the benefit of being normalized between 0 and 1. Note that
the fraction of spectrum abundance matched is only used to
differentiate PSMs with the same number of matching products
and can be considered a secondary metric that will never
override the primary metric.

Figure 2. Comparison of PSM, distinct peptide, and protein group identifications at 1% FDR with Mascot, OMSSA, Sequest, ZCore, and Morpheus
for (a) Q−TOF E. coli, (b) dcLIT−OT yeast, (c) dcLIT−OT human, (d) Q−OT human, (e) LIT−OT ETD human, and (f) dcLIT−OT/IT yeast
data sets. For all five high−mass accuracy data sets, Morpheus is the highest in all three quantities.
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Despite the simplicity of the scoring, as well as the other
components of the software, Morpheus performs better than
other algorithms for a diverse collection of contemporary
proteomics data sets. One potential explanation for this is that
all the other search algorithms were designed for low−mass
accuracy MS/MS data and have not been fully re-evaluated in
light of the added specificity provided by high−mass accuracy.
Reinforcing this hypothesis, Morpheus performs the worst for
the low-resolution data set (f), although not by a wide margin.
It is possible that algorithms that analyze both low- and high-
resolution MS/MS in fundamentally the same manner are
forced to compromise their scoring to balance sensitivity and
specificity.

Certainly the efficacy of the Morpheus scoring demonstrates
that, for high-resolution data, other algorithms do not
sufficiently emphasize the number of matching products,
perhaps overstressing the abundance of matching fragment
peaks. Other algorithms may also use scores that excessively
punish for the presence and abundance of unmatched fragment
ions, which does not appear necessary as long as abundance
filters limit the number of peaks per spectrum. Because of this
lack of penalty for unmatched ions, the scoring of Morpheus is
quite suitable for chimeric spectra (such as Figure 1, as
evidenced by both the MS1 isolation window and the MS/MS
spectrum), although it is currently only configured to allow a
single peptide match per spectrum.

Figure 3. Examination of the impact of abundance filtering (AF), charge state assignment (CSA), and deisotoping (DI) of MS/MS spectra on the
performance of Morpheus for (a) Q−TOF E. coli, (b) dcLIT−OT yeast, (c) dcLIT−OT human, (d) Q−OT human, (e) LIT−OT ETD human, and
(f) dcLIT−OT/IT yeast data sets. Surprisingly, aside from abundance filtering to retain the top 400 peaks, these features do not prove essential,
except in the Q−OT and dcLIT−OT/IT data sets. This leaves scoring as the primary explanation for the exceptional performance of Morpheus.

Figure 4. Venn diagrams for Mascot, OMSSA, Sequest, and Morpheus for the second replicate of the Q−OT human data set at the (a) PSM, (b)
distinct peptide, and (c) protein group levels. The massive overlap of all four algorithms underscores the reliability of the results, although Morpheus
had the most identifications unique to it for all three metrics.
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We next sought to determine the influence of the unique
features of Morpheus, aside from its scoring, namely, the
preprocessing routines: abundance filtering, charge state
assignment, and deisotoping of MS/MS spectra. We searched
each data set several times, combinatorially adding features, to
assess their effects. The results are shown in Figure 3. Aside
from the Q−OT human data set, these features do not provide
an overwhelming benefit. The Q−OT data set is very sensitive
to the top 400 peaks abundance filtering, likely because a
significant population of those MS/MS spectra contain a high
number of peaks (Figure S2, Supporting Information). Charge
state assignment tended to give a mild benefit; likewise with
deisotoping, although to a lesser extent. In some cases
deisotoping actually reduced the number of identifications
but overall was a net positive. For most data sets, however,
assuming all MS/MS peaks are singly charged and not
deisotoping is an acceptable solution.
Ultimately, these searches show that the principle explan-

ation for the outstanding results of Morpheus is the scoring.
This is encouraging because it means that, for high-resolution
MS/MS, naive algorithms are sufficient to provide superior
results to commonly used software for peptide identification.
Again, the low-resolution data sets (f) showed a dissimilar
pattern from the rest, underscoring the fundamentally different
nature of this type of data.
To further validate the results of Morpheus, four-way Venn

diagrams were constructed in Figure 4 for (a) PSMs, (b)
distinct peptides, and (c) protein groups for the second
replicate of the Q−OT human data set. In all cases, there was
substantial agreement between the algorithms, with the four-
way overlap always being the highest by several fold. However,
among all three quantities, Morpheus had at least twice as many
identifications that were completely unique to it as the next
highest competitor. The distribution of q-values for PSMs
unique to Morpheus is plotted in Figure S3, Supporting
Information. Many (∼12%) have a q-value of 0%, meaning their
scores were better than the best-scoring decoy and therefore are
extremely unlikely to be incorrect.
Pseudo−receiver operating characteristic (ROC) curves were

also constructed for this data set. In Figure 5, the number of (a)
target PSMs, (b) distinct target peptides, and (c) target protein
group identifications are plotted against FDR. Reflecting Figure
2d, the Morpheus ROC curves are highest at 1% FDR, followed
by Sequest, OMSSA, then Mascot (the latter two are flipped for
protein groups). Parts (a) and (b) also reveal an interesting
trend in the Morpheus results: an oscillatory pattern, indicating
stretches of higher-than-expected numbers of target or decoy
identifications. This is understandable given the Morpheus
scoring, in which the secondary component (fraction of
abundance matched) is given much less weight than the
primary component (number of matching products). The
oscillatory behavior is indicative that the secondary component
of the score is given too little weight relative to the primary
component. The vertical jumps always appear at a transition
between n matching products with a relatively low fraction of
abundance matched to n − 1 matching products with a
relatively high fraction of abundance matched. The former
identifications have a relatively high FDR, leading to a shallow
slope, while the latter identifications have a relatively low FDR,
leading to a steep slope. This process repeats at every transition.
Although this behavior appears to have minimal adverse effects
on algorithm performance, presumably it could be corrected by

weighting the fraction of abundance matched more heavily,
which would smooth out the ROC curve.
Morpheus is also substantially faster than any of the other

search algorithms tested. This is despite that it was written in
C# .NET, a high-level programming language, which is typically
assumed to be slower than the lower-level C and C++
languages, which the other algorithms were written in. We
performed a head-to-head comparison between Morpheus and
OMSSA, as those algorithms were informally judged to be the
fastest by a large margin and also because they were designed to
be launched from the command line, facilitating an automated
benchmark. We performed ten searches of the second replicate
of each of the high−mass accuracy data sets, alternating
between the two algorithms, and recorded the amount of time
elapsed. All searches were performed on a Dell PowerEdge
2900 server with dual quad-core 3 GHz Intel Xeon processors
and 32 GB of RAM running 64-bit Windows Server 2003 R2.
Figure 6 displays the results of the speed comparison where
both algorithms were instructed to use 8 threads, equal to the
number of processor cores available.
Morpheus ranges from roughly 1.5 to 4.6 times faster than

OMSSA. The improvement increases with higher numbers of

Figure 5. Pseudo-ROC curves (identifications versus FDR) for
Mascot, OMSSA, Sequest, and Morpheus for the second replicate of
the Q−OT human data set at the (a) PSM, (b) distinct peptide, and
(c) protein group levels. The dashed line indicates the 1% FDR
threshold, at which Morpheus had the most identifications for all three
metrics. The oscillatory behavior of the Morpheus curves in panels a
and b is due to the simple score but does not seem to have any
practical negative impact.
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MS/MS spectra and larger protein databases. Interestingly,
when both algorithms were run with only a single thread,
OMSSA was faster for all but the Q−OT human data set
(Figure S4, Supporting Information), which contains a high
number of MS/MS spectra and a large protein database. This
suggests that Morpheus performs multithreading more
efficiently. This is accomplished by simply dividing the proteins
among the available threads. Another feature of Morpheus that
contributes to its speed, particularly for large data sets, is that it
keeps a history of the peptide sequences that have already been
searched, although this mode can be disabled to conserve
memory for larger protein databases such as those containing
multiple organisms. A speed comparison with this feature
enabled and disabled is also included in Figure S4, Supporting
Information.
Morpheus shares some features with the Andromeda search

algorithm18 developed by the Mann lab and integrated into
MaxQuant.19 Both are written in C# .NET and are designed to
be run on personal computers as opposed to the client−server
model typified by Mascot. Andromeda also uses relatively
simplistic, albeit still probability-based, scoring. However,
Andromeda considers neutral losses, while Morpheus only
searches for mainline product types (i.e., b, y, c, and z•).
Additionally, Andromeda uses a top n peaks per 100 Th as
opposed to across the entire spectrum range like Morpheus,
and Andromeda also optimizes n on a per-spectrum and per-
100 Th interval, while Morpheus just uses a global threshold for
all spectra.
We attempted to include Andromeda in our comparison, but

several factors prohibited this. It only accepts Thermo .raw files.
It also does not allow the user to provide custom concatenated
target−decoy databases, but rather generates its own from a
target-only FASTA file. Precursor mass tolerance can only be
specified in parts per million and not daltons. Finally, it does
not provide output in pepXML format. These issues prevented
a fair comparison and the informational value of such a flawed
comparison would be very limited. The authors of Andromeda
say it mirrors the performance of Mascot, which we have
included in our comparison, with the caveat that they use a
more extensive FDR determination, which may yield more
identifications.

Morpheus is designed to be extremely easy to use and is
available through either a graphical user interface (Figure S5,
Supporting Information) or a command-line interface. It
accepts mzML as input and thus is compatible with virtually
any mass spectrometer. Unique among the search algorithms
tested, it accepts protein databases in the FASTA format
without requiring conversion and, in most cases, central
management. Concatenated target−decoy databases can be
provided by the user or generated on the fly. FDR calculations
are performed automatically at the PSM, distinct peptide, and
protein group levels. Morpheus is available for download, both
as a Windows executable and source code as a Microsoft Visual
Studio 2010 solution, at http://www.chem.wisc.edu/~coon/
software.php#morpheus. It is available open source through the
permissive MIT License, which allows commercial use. In
addition to the generic version used for this article that accepts
mzML files, we also provide a version that accepts Agilent .d
directories and a version that accepts Thermo .raw files. These
versions use the vendor charge state assignment and
deisotoping routines, if available, for MS/MS spectral
preprocessing.
We have also provided everything necessary to reproduce the

results presented here, with the exception of the commercial
search algorithms (Sequest and ZCore of Proteome Discoverer,
and Mascot) at http://www.chem.wisc.edu/~coon/
Downloads/Morpheus/. This includes raw data in Agilent .d
or Thermo .raw format, data after conversion to mzML, FASTA
protein databases, parameters, scripts, executables (OMSSA,
ProteoWizard, and Morpheus), and outputs.

■ CONCLUSIONS

With Morpheus, we demonstrate a rare combination of speed,
simplicity, and sensitivity for the analysis of high−mass
accuracy data. Remarkably, we show that straightforward
algorithms and scoring yield superior performance to popular
search algorithms at significantly higher speed. We note that, in
this comparison, FDR is calculated on the basis of a single score
instead of with more advanced methods such as PeptidePro-
phet40 or Percolator.41 Nonetheless, it is remarkable that the
single score used, which is little more than the number of
matching products, proved to be more effective at discriminat-
ing correct and incorrect identifications than the more
advanced scores employed in popular search algorithms. We
believe these results merit a re-evaluation of peptide
identification in the era of high−mass accuracy MS/MS.
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Figure 6. Speed comparison of OMSSA and Morpheus. Both
algorithms were specified to use 8 threads, the maximum practical
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